Synthesis, Reactivity, and ¹²⁵Te NMR Studies of $(C_5H_5)RhFe_2Te_2(CO)_x$ (x = 6, 7)

DAVID A. LESCH and THOMAS B. RAUCHFUSS*

Received November 5, 1982

The square-pyramidal 50e cluster Fe₃Te₂(CO)₉ reacts with CpRh(CO)₂ (Cp = η^5 -C₃H₅) to give a good yield of the heterometallic 52e cluster CpRhFe₂Te₂(CO)₇. This heptacarbonyl undergoes Me₃NO-induced decarbonylation to give two isomers of the hexacarbonyl CpRhFe₂Te₂(CO)₆. Recarbonylation of CpRhFe₂Te₂(CO)₆ formed the same heptacarbonyl in isomerically pure form. In contrast, addition of PPh₃ to CpRhFe₂Te₂(CO)₆ gave two isomers of CpRhFe₂Te₂(CO)₆PPh₃ that differ with regard to the placement of the PPh₃ ligand on iron or rhodium. The iron-phosphine adduct undergoes chemically induced decarbonylation to CpRhFe₂Te₂(CO)₅PPh₃ while the rhodium-phosphine adduct resists decarbonylation. ¹²⁵Te NMR spectroscopy has been used for structure elucidation. The 50e (nido) clusters Fe₃Te₂(CO)₆ (two isomers each for M = Co, Rh) all absorb in the range 1123-1081 ppm downfield of Me₂Te₂. In dramatic contrast, the 52e (arachno) clusters Fe₃Te₂(CO)₆(PPh₃)₂, which has an arachno-like structure but a nido electron count (50e), absorbs in the arachno range.

Introduction

Bridging nonmetals play a pivotal role in the synthesis and stabilization of many transition-metal cluster compounds.¹ Structural studies have established that nonmetals can span from two to twelve² vertices. Reactivity studies have shown that, once assembled, such nonmetal transition-metal clusters are not only very resistant to declusterification but are often coordinatively unsaturated.^{3,4}

We have developed an interest in tellurium-bridged metal carbonyl cluster compounds with recent emphasis on the chemistry $Fe_{3}Te_{2}(CO)_{9}$. This compound can be readily prepared in ca. 90% yield via the reduction of TeO₃²⁻ by HFe- $(CO)_4^{-.5}$ In contrast to the behavior of its NCH₃, S, and Se analogues, $Fe_3Te_2(CO)_9$ forms adducts with a wide variety of Lewis bases, e.g. NH_3 , R_3P , CO, and $I^{-4.6}$ Furthermore, the Fe₃Te₂ unit is so resistant to declusterification that it can be recovered intact from refluxing neat P(OCH₃)₃.⁷ In contrast, unbridged clusters like $Fe_3(CO)_{12}$ and $Ru_3(CO)_{12}$ reliably fragment upon treatment with excesses of Lewis bases.⁸ In this paper we describe the transmetalation of $Fe_3Te_2(CO)_9$ leading to new clusters whose core stoichiometry is RhFe₂Te₂. Mechanistic implications aside, selective and direct transmetalation is a potentially powerful yet obviously simple route to mixed-metal cluster compounds.⁹ This method is conceptually distinct from the widely recognized condensation approach¹⁰ since transmetalation preserves the nuclearity of

- Müller, A.; Diemann, E.; Jostes, R.; Bôgge, H. Angew. Chem., Int. Ed. Engl. 1980, 20, 934. Vahrenkamp, H. Ibid. 1975, 14, 322. Schmid, G. Ibid. 1978, 17, 92. DiViara, M.; Sacconi, L. Ibid. 1982, 21, 330. Vahrenkamp, H. In "Transition Metal Chemistry"; Müller, A., Diemann, D., Eds.; Verlag Chemie: Weinheim, 1980; p 35 ff.
 (2) Rh₁₂Sb(CO)₂₁³; Vidal, J. L.; Troup, J. M. J. Organomet. Chem. 1981,
- Rh₁₂Sb(CO)₂₁³⁻: Vidal, J. L.; Troup, J. M. J. Organomet. Chem. 1981, 213, 351. Vidal, J. L.; Walker, W. E.; Schoening, R. C. Inorg. Chem. 1981, 20, 239-243.
- (3) CrFe₂(PPh)(CO)₁₁: Huttner, G.; Mohr, G.; Friedrich, P. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1978, 33, 1254. CpMnFe₂: (PPh)(CO)₈: Schneider, J.; Zaolna, L.; Huttner, G. Chem. Ber. 1982, 115, 989. Fe₄(Ptol)₂(CO)₁₀(OMe)₃): Vahrenkamp, H.; Wolters, D. Organometallics 1982, 1, 874. CpMoCo₂FeS(CO)₈(AsMe₂): Richter, F.; Vahrenkamp, H. Ibid. 1982, 1, 756.
- (4) Lesch, D. A.; Rauchfuss, T. B. Organometallics 1982, 1, 499.
- (5) Lesch, D. A.; Rauchfuss, T. B. Inorg. Chem. 1981, 20, 3583.
 (6) Cetini, G.; Stanghellini, P. L.; Rossetti, R.; Gambino, O. J. Organomet.
- Chem. 1968, 15, 373. (7) Day, V. W.; Lesch, D. A.; Rauchfuss, T. B., to be submitted for publication.
- (8) Angelici, R. J.; Siefert, E. Inorg. Chem. 1966, 5, 1457. Malik, S. K.; Poe, A. Ibid. 1979, 18, 1241.
- (9) For a recent example of the transmetalation of a carbonyl cluster, see: Beurich, H.; Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2409.

Table I. Microanalytical Data (Theoretical Values in Parentheses)

compd	% C	% H	% Fe
CpRhFe ₂ Te ₂ (CO) ₇	19.66	0.66	15.17
	(19.72)	(0.69)	(15.28)
$CpRhFe_{2}Te_{2}(CO)_{6}$	18.89	0.66	16.01
•	(18.79)	(0.72)	(15.89)
CpRhFe ₂ Te ₂ (CO) ₆ PPh ₃	36.00	2.07	11.81
(mixture of isomers)	(36.09)	(2.09)	(11.57)
CpRhFe ₂ S ₂ (CO) ₆	25.46	0.90	21.77
	(25.81)	(0.98)	(21.82)
CpRhFe ₂ Te ₂ (CO),PPh,	36.19	2.14	11.62
	(35.88)	(2.15)	(11.92)

the cluster precursor. In the present case the transmetalated product is of special interest since it, like $Fe_3Te_2(CO)_9$, is effectively coordinatively unsaturated.

This paper describes the utility of ¹²⁵Te NMR spectroscopy for structural characterization. The RhFe₂Te₂ clusters are particularly suitable for this technique for two reasons: first, these clusters undergo a number of relatively subtle structural changes that are difficult to elucidate otherwise and, second, the distinctive nuclear properties of ¹⁰³Rh (100% naturally abundant, I = 1/2) allow us to supplement chemical shift data with $J_{\rm RhTe}$, thereby strengthening structural assignments. The results on the RhFe₂Te₂ system are found to be fully corroborated by the ¹²⁵Te NMR data obtained for related Fe₂MTe₂ clusters. These results reveal the extraordinary sensitivity of the chemical shift of the bridging tellurium to the metal-metal bonding within the cluster.

Experimental Section

¹²⁵Te NMR spectra were obtained on CDCl₃ solutions at 31.583 or 31.547 MHz on a modified Varian XL-100 spectrometer using an external D₂O lock. Operating parameters included a spectral width of 50 kHz, a pulse width of 25 μ s, and a pulse delay of 2 s. To obtain satisfactory spectra, 10³-10⁴ scans were required. All chemical shifts are referenced to neat Me₂Te at 27 °C, upfield being negative. ³¹Pl⁴H} NMR spectra were obtained on the same instrument with 85% H₃PO₄ as the reference. IR spectra were obtained with use of cyclohexane solutions on a Nicolet 7199C FT IR spectrometer. Field desorption mass spectra (FDMS) were run on a Varian 731 spectrometer by Carter Cook. Microanalyses (Table I) were performed by the School of Chemical Sciences analytical laboratory.

Reactions were performed under nitrogen in reagent grade solvents. Thin-layer chromatography was performed on 2×10 cm plates cut from sheets of Eastman silica gel coated poly(vinyl chloride). Column chromatography was done with Fisher Florisil. Me₃NO was prepared

⁽¹⁰⁾ Gladfelter, W. L.; Geoffroy, G. L. Adv. Organomet. Chem. 1980, 18, 207.

by triply subliming $Me_3NO\cdot 2H_2O$ (Aldrich) in vacuo at 80 °C. The preparations of $CpRh(CO)_2$,¹¹ $Fe_3Te_2(CO)_9$,⁵ $Fe_3Te_2(CO)_9PPh_3$,⁴ $Fe_3Te_2(CO)_6(PPh_3)_2$ ¹² are described elsewhere.

CpRhFe₂Te₂(CO)₇. Fe₃Te₂(CO)₉ (1.1 g, 1.7 mmol) and CpRh-(CO)₂ (0.40 g, 1.8 mmol) in MeCN (100 mL) were refluxed for 2 h and then evaporated to dryness. The residue was recrystallized from CH₂Cl₂ and MeOH: yield 73% (0.92 g); FDMS m/z 731 (M⁺).

CpRhFe₂**Te**₂(**CO**)₆. Me₃NO (0.027 g, 0.37 mmol) was added to a CH₂Cl₂ (50 mL) solution of CpRhFe₂Te₂(CO)₇ (0.23 g, 0.32 mmol). After being stirred 10 min at room temperature, the solution was concentrated to 5-10 mL, and then hexane (~30 mL) was added. Enough CH₂Cl₂ was added to dissolve the crystals that formed. The solution was placed on a Florisil column (80 mL) and eluted with hexane. The red-purple fraction (first band) was evaporated to dryness and then recrystallized from CH₂Cl₂/MeOH: yield 58% (0.15 g); FDMS m/z 703 (M⁺); UV-vis (toluene) λ_{max} 395 nm, $\epsilon = 9.75 \times$ 10³ L mol⁻¹ cm⁻¹.

Carbonylation of CpRhFe₂Te₂(CO)₆. A CH₂Cl₂ (15 mL) solution of CpRhFe₂Te₂(CO)₆ (0.050 g) was stirred in an autoclave under 2000 psi of CO. After 1 h at room temperature, a ~1:1 mixture (by TLC using 1:1 benzene/hexane eluent) of hexa- and heptacarbonyl derivatives was obtained. The solution was evaporated to dryness and chromatographed on Florisil (1:1 benzene/hexane eluent). An IR spectrum of the dried residue of the orange fraction (second band) was identical with that of the sample prepared from CpRh(CO)₂ and Fe₃Te₂(CO)₉.

 $CpRhFe_2Te_2(CO)_6PPh_3$. PPh₃ (0.35 g, 1.3 mmol) was added to a CH_2Cl_2 (60 mL) solution of $CpRhFe_2Te_2(CO)_6$ (0.19 g, 0.27 mmol), which was then stirred for 16 h. The resulting mixture was evaporated to dryness, extracted into a mininum of benzene/hexane, and chromatographed on a Florisil column, eluting with 1:1 benzene/hexane. After two minor bands (orange then purple), a third intensely redorange band was eluted. The dried residue from the third band was recrystallized from $CH_2Cl_2/MeOH$: yield 71% (0.18 g); FDMS m/z965 (M⁺). The two isomers of $CpRhFe_2Te_2(CO)_6PPh_3$ were separated by using a 40-cm Florisil column (1:1 benzene/hexane eluent). Alternatively the mixture of isomers was reacted with an excess of Me_3NO , which selectively decarbonylated the iron-phosphine isomer. The large difference in polarity between $CpRhFe_2Te_2(CO)_6PPh_3$ and $CpRhFe_2Te_2(CO)_5PPh_3$ permitted easy chromatographic separation of this mixture on Florisil.

CpRhFe₂Te₂(CO)₅PPh₃. Excess Me₃NO was added to a CH₂Cl₂ solution of CpRhFe₂(CO)₆PPh₃ (iron-phosphine isomer), and the mixture was stirred for 10 min. TLC (1:1 benzene/hexane eluent) showed quantitative conversion to a purple, less polar compound. The solution was filtered through a silica gel plug; then crystals were obtained by adding MeOH and concentrating: FDMS m/z 937 (M⁺); UV-vis (toluene) λ_{max} 401 nm.

CpRhFe₂S₂(CO)₆. A hexane solution (15 mL) of CpRh(CO)₂ (0.11 g, 0.50 mmol) and Fe₂(S₂)(CO)₆ (0.17 g, 0.50 mmol) was refluxed for 2 h. The concentrated solution was chromatographed on a Florisil column, and the third band (red-brown) was collected and evaporated. The residue was recrystallized from CH₂Cl₂/CH₃OH: yield 21% (53 mg); FDMS m/z 512 (M⁺).

Results and Discussion

Synthesis and Reactivity of CpRhFe₂Te₂(CO)₇. Fe₃Te₂(C-O)₉ was found to react with CpRh(CO)₂ (Cp = η^5 -C₅H₅) in refluxing CH₃CN to give the transmetalated cluster CpRhFe₂Te₂(CO)₇ in 73% yield. The formulation of this new compound is based on microanalytical data and the observation of a molecular ion in its field desorption mass spectrum. Crystals of this compound display a distinctive metallic luster, which is also observed for Fe₃Te₂(CO)₁₀.⁵ The similarity of these clusters also extends to their ¹²⁵Te NMR spectroscopy (vide infra). Since the CpRh(CO) and Fe(CO)₄ units are electronically equivalent, it follows that the formation of CpRhFe₂Te₂(CO)₇ from Fe₃Te₂(CO)₉.⁴ This arises since, in CH₃CN solution, Fe₃Te₂(CO)₉ is in equilibrium with

Table II. IR Data^a

compd	$\nu_{\rm CO}, {\rm cm}^{-1}$
CpRhFe ₂ Te ₂ (CO) ₇	2047 m, 2025 vs, 1981 s, 1972 s
CpRhFe ₂ Te ₂ (CO) ₆	2036 vs, 2009 s, 1984 s, 1968 m, 1951 m
$CpRhFe_2Te_2(CO)_6PPh_3$ (RhPPh_3 isomer)	2040 s, 1997 vs, 1974 m, 1951 w, 1938 w
$CpRhFe_2Te_2(CO)_6PPh_3$ (FePPh, isomer)	2038 m, 2011 vs, 1965 s, 1950 m, 1937 w
CpRhFe2Te2(CO)5PPh3	2025 vs, 1969 sh, 1965 s, 1960 sh, 1922 m
$CpRhFe_2S_2(CO)_6$	2066 w, 2041 s, 1991 m

^a Cyclohexane solutions.

Table III. ¹²⁵Te NMR Data (CDCl₃ solution)^a

compd	δ	J, Hz
Fe,Te,(CO),	1123	
Fe, Te, (CO), PPh,	-887	
	-938	42 (Te-P)
Fe, Te, (CO), PPh,	1062	
CpRhFe, Te, (CO), b	-973	93 (Te-Rh)
$CpRhFe_Te_(CO)$	1081	
1 1 1 10	1109	
CpRhFe,Te,(CO),PPh, ^{d,e}	-925	100 (Te-Rh)
-1 2 2 2 - 5 - 5		21 (Te-P)
	-838	. ,
PtFe,Te,(CO),(PPh,),	-861	561 (Te-Pt)
$1110_{2}10_{2}(00)_{6}(111_{3})_{2}$	001	501 (10-11)

^a Positive shifts are downfield of neat Me₂Te. ^b δ ⁽¹H) 5.66. ^c δ ⁽¹H) 6.12. ^d δ ⁽³¹P) 37.1, ¹J_{PRh} = 176 Hz. ^e δ ⁽³¹P) 62.3, ³J_{PRh} = 60 Hz, ²J_{PTe} = 56 Hz.

Fe₂(Te₂)(CO)₆¹² which in turn reacts with "CpRh(CO)".

Trimethylamine N-oxide effected decarbonylation of the mixed-metal heptacarbonyl cluster to give the purple-black hexacarbonyl CpRhFe₂Te₂(CO)₆. This compound, like the corresponding heptacarbonyl precursor, was characterized by IR spectroscopy (Table II), field desorption mass spectrometry, combustion analyses (Table I), and ¹²⁵Te NMR spectroscopy (Table III). The decarbonylation of $CpRhFe_2Te_2(CO)_7$ is accompanied by both a color change from orange to brown and a dramatic decrease in chromatographic polarity. This behavior again is completely analogous to the decarbonylation of $Fe_3(\mu_3-Te)_2(CO)_{10-n}L$.⁴ These conversions involve the formation of nido (50e) clusters¹³ from arachno (52e) precursors. It is interesting to note that in the nido configuration the mixed-metal cluster exists as two isomers as judged by ¹²⁵Te NMR spectroscopy. These isomers were not chromatographically separable, and the isomer ratio appeared to be invariant, as judged by IR and ¹²⁵Te NMR spectroscopy. Thus, they must interconvert readily although at a rate too slow to be measured in our NMR experiments. A similar dynamic process was postulated for $Fe_3(\mu_3-Te)_2(CO)_{9-n}L_n^{\gamma}$ and was actually observed for $Os_3(\mu_3-S)(\mu_3-NSiMe_3)(CO)_9$.¹⁴

The reaction of $Fe_2(S_2)(CO)_6$ with $CpRh(CO)_2$ contrasts interestingly with the tellurium cluster chemistry in that we observed only the nido hexacarbonyl $CpRhFe_2S_2(CO)_6$. This observation illustrates the tendency of the μ_3 -Te moiety to stabilize more open clusters than found for smaller tethering atoms.

CpRhFe₂Te₂(CO)₆ reacted under 2000 psi of CO to re-form the heptacarbonyl derivative, which was spectroscopically indistinguishable from the sample initially prepared from CpRh(CO)₂ and Fe₃Te₂(CO)₉. The formation of a single isomer from the isomeric nido precursors implies that the thermodynamically most favored heptacarbonyl isomer is that where the "extra" CO is ligated to the rhodium. Different

⁽¹¹⁾ Lawson, R. J. Ph.D. Thesis, University of Illinois, 1978.

⁽¹²⁾ Bogan, L. E., Jr.; Lesch, D. A.; Rauchfuss, T. B. J. Organomet. Chem., in press.

⁽¹³⁾ Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.

⁽¹⁴⁾ Süss-Fink, G.; Thewalt, U.; Klein, H. P. J. Organomet. Chem. 1982, 224, 59.

Scheme I

results were obtained for the reaction of the hexacarbonyl precursor with triphenylphosphine.

Reaction of CpRhFe₂Te₂(CO)₆ with excess triphenylphosphine at room temperature gave a mixture of two chromatographically separable isomers. The ³¹P NMR spectrum of the reaction mixture revealed that the major isomer had a large J_{PRh} while the minor isomer was characterized by a much smaller J_{PRh} (Table III). These resonances are assigned to the two isomeric clusters of the formula CpRhFe₂Te₂- $(CO)_6PPh_3$ (Scheme I). In the major isomer, the phosphine is coordinated to rhodium while the minor isomer is proposed to contain the $Fe(CO)_{3}PPh_{3}$ moiety. Upon treatment with Me_3NO , only the $Fe(CO)_3PPh_3$ isomer underwent decarbonylation to give the nido cluster CpRhFe₂Te₂(CO)₅PPh₃, which was characterized by FDMS and its electronic absorption spectrum. The nonreactivity of the CpRhPPh₁ isomer correlates with the generally observed pattern that a 6-coordinate $Fe(CO)_3$ vertex is particularly resistant to decarbonylation.

¹²⁵Te NMR Spectroscopy. With the advent of multinuclear NMR spectroscopy, an increasing interest has been shown in the ¹²⁵Te nucleus.^{15,16} This isotope (I = 1/2) is 7.3% naturally abundant and is characterized by a relatively high magnetogyric constant. At natural abundance, the ¹²⁵Te nucleus is approximately 14 times easier to detect than is ¹³C.¹⁵

There have been two reports of ¹²⁵Te NMR studies on transition-metal compounds. The cis and trans isomers of $PtCl_2(Te(CH_2CH_2Ph)_2)_2$ were recently shown to have chemical shifts that differed by 45 ppm.¹⁷ We have previously reported that the ¹²⁵Te NMR chemical shifts for Fe₃Te₂(CO)₉ and $Fe_2Te_2(CO)_6$ differed by 1800 ppm.⁵ Thus, it was clear at the inception of the project that, while not necessarily easily correlated, ¹²⁵Te NMR shifts would be particularly sensitive to subtle structural changes.

The ¹²⁵Te NMR spectrum of CpRhFe₂Te₂(CO)₇ consists of a rhodium-coupled doublet $(J_{RhTe} = 91 \text{ Hz})$ centered at -973 ppm relative (upfield) to $Te(CH_3)_2$ (Table III). This same isomer of CpRhFe₂Te₂(CO)₂ could be prepared via either the transmetalation reaction of $Fe_3Te_2(CO)_9$ or carbonylation of CpRhFe₂Te₂(CO)₆. In contrast, the ¹²⁵Te NMR spectrum of CpRhFe₂Te₂(CO)₆ showed signals at 1081 and 1109 ppm downfield of $Te(CH_3)_2$, the intensities being ca. 1:4 in favor of the higher field signal. The ¹²⁵Te chemical shift change of 2000 ppm attendant to the interconversion of the hexa- to heptacarbonyl spectacularly illustrates the sensitivity of the chemical shift of the μ_3 -Te moiety to the metal-metal bonding in these clusters. Consistent with this, we note that the isomeric PPh₃ adducts of the formula CpRhFe₂Te₂(CO)₆PPh₃ again have ¹²⁵Te NMR shifts very close to that of heptacarbonyl. While the isomeric PPh₃ adducts are characterized by comparable ¹²⁵Te NMR shifts, they differ appreciably in

Figure 1. ¹²⁵Te NMR spectrum of CpRh(PPh₃)(μ_3 -Te)₂Fe₂(CO)₆.

Figure 2. ¹²⁵Te NMR spectrum of Fe₃Te₂(CO)₉PPh₃.

 $|J_{PRh}|$ as determined by ³¹P NMR spectroscopy. The isomer with the larger $|J_{PRh}|$ of 176 Hz is assumed to possess the PPh₃ coordinated to the RhCp moiety. The other isomer, characterized $|J_{PRh}| = 60$ Hz, must therefore contain the Fe-(CO)₃PPh₃ group. Furthermore, the ¹²⁵Te NMR pattern for the Fe-PPh₃ isomer of [CpRhFe₂Te₂(CO)₆]·PPh₃ is broad and complex, consistent with the complications associated with slightly nonequivalent Te moieties each of which is coupled to ¹⁰³Rh and ³¹P nuclei. On the other hand, the ¹²⁵Te NMR spectrum of the Rh-PPh₃ isomer is straightforward as it reveals coupling of equivalent Te atoms to both ¹⁰³Rh and ³¹P (Figure 1).

The correlation of ¹²⁵Te NMR shifts and cluster core structure is strongly supported by studies on related cluster compounds whose structures are well established. Fe₃Te₂(C-O)₉, a 50 e cluster compound, has a ¹²⁵Te NMR shift of 1100 ppm downfield of $Te(CH_3)_2$, within 15 ppm of the resonances observed for the CpRhFe₂Te₂(CO)₆ isomers. Conversion of $Fe_{3}Te_{2}(CO)_{9}$ to its PPh₃ adduct results in a large upfield shift. Both its chemical shift and the splitting pattern are consistent with the arachno structure for $Fe_3Te_2(CO)_9PPh_3$. This structure, which has been confirmed crystallographically,⁴ consists of an Fe(CO)₃PPh₃ moiety bridged via two μ_3 -Te units

[&]quot;NMR and the Periodic Table"; Harris, R. K., Mann, B. E., Eds.; (15)

<sup>Academic Press: New York, 1978.
Gysling, H. Coord. Chem. Rev. 1982, 42, 133. Granger, P.; Chapelli, S. J. Magn. Reson. 1980, 39, 329.
Gysling, H. J.; Zumbulyadis, N.; Robertson, J. A. J. Organomet. Chem. 1981, 209, C41.</sup> (16)

⁽¹⁷⁾

Figure 3. ¹²⁵Te NMR chemical shift scale for some Te-containing organometallic clusters.

to the Fe₂(CO)₆ base. This structure is fully compatible with the ¹²⁵Te NMR spectrum, which is comprised of a singlet and a ³¹P-coupled doublet (Figure 2). Decarbonylation of this adduct affords Fe₃Te₂(CO)₈PPh₃, whose ¹²⁵Te NMR shift now lies in the region observed for other nido clusters. From these measurements it is clear that there are two *distinct* chemical shift regions for these nido and arachno M₃Te₂ clusters at 1100 \pm 25 and -900 \pm 75 ppm, respectively. The observed chemical shift scale is depicted in Figure 3.

The species $PtFe_2Te_2(CO)_6(PPh_3)_{2,1}^{18}$ like $Fe_3Te_2(CO)_9$, is a 50e cluster compound. On the basis of its electron count alone, a square-pyramidal (nido) structure and a low-field ¹²⁵Te NMR shift would be anticipated. However, as a consequence of the predilection of platinum(II) for the electron deficient 16e configuration, Pt(PPh_3)_2 is *effectively* equivalent to the Fe(CO)₄, CpCo(CO), and CpRh(CO) moieties. This assertion is supported by the close structural relationship that exists between $Fe_3Te_2(CO)_9PPh_3$ and $PtFe_2Se_2(CO)_6(PPh_3)_2^{18}$ (which is completely analogous to $PtFe_2Te_2(CO)_6(PPh_3)_2$).

This structural and electronic equivalence of the arachno (52e) Fe_3Te_2 and MFe_2Te_2 clusters and the 50e $PtFe_2Te_2$ cluster is confirmed by their similar ¹²⁵Te NMR chemical shifts (Figure 3). This measurement demonstrates that the observed ¹²⁵Te NMR shift pattern is a consequence of the number of metal-metal bonds subtended by the tethering Te groups and not the electron count of the cluster. This conclusion is consistent with the view that the observed ¹²⁵Te chemical shift pattern results from the magnetic anisotropy associated with the metal-metal bonds.¹⁹

Conclusions

The conversion of $Fe_3Te_2(CO)_9$ into $CpRhFe_2Te_2(CO)_7$ involves transmetalation concomitant with a nido to arachno cluster expansion. We suggest that the assembly of the Fe_2RhTe_2 clusters proceeds via the 2e oxidative addition of CpRh(CO) across the Te-Te bond of $Fe_2(Te_2)(CO)_6$. A similar process is exemplified by the simple oxidative addition of $PtC_2H_4(PPh_3)_2$ to $Fe_2(Te_2)(CO)_6$ to give $PtFe_2Te_2(CO)_6$ - $(PPh_3)_2$.¹⁸ In the event that the incorporated metal fragment can undergo further ligand dissociation and can accommodate a pseudooctahedral coordination geometry, further condensation can occur as observed in the synthesis of the isomeric nido RhFe₂Te₂ clusters. The intermediate arachno cluster is readily isolable for CpRhFe₂Te₂(CO)₇ whereas for the corresponding sulfide it is unstable with respect to decarbonylation. A particularly important aspect of the conversion of the Fe₃Te₂ cluster to its CpRhFe₂Te₂ derivative is that Fe₃Te₂-(CO)₉ effectively functions as a source of the highly reactive and unstable $Fe_2(Te_2)(CO)_6$ moiety.⁵ The implication is that $Fe_3Te_2(CO)_9$ represents a potentially versatile precursor to a number of different clusters containing the FeTe(CO)₃ unit.¹²

¹²⁵Te NMR spectroscopy has proven to be uniquely effective for elucidating structural changes peculiar to the CpRhFe₂Te₂ cluster core. While it is logical that a single arachno isomer would obtain for the oxidative addition of $Fe_2(Te_2)(CO)_6$ to "CpRh(CO)", it is not so obvious that the two isomers of CpRhFe₂Te₂(CO)₆ would carbonylate to give the same isomer. In contrast, the isomeric triphenylphosphine adducts CpRhFe₂Te₂(CO)₆PPh₃ do no readily interconvert, indicative that these are kinetic products.

The distinctive chemical shift patterns observed for the nido and arachno M_3Te_2 clusters (Figure 3) demonstrate the utility of NMR measurements on the cluster core. Similar shift patterns have been observed for related phosphinidine (μ_3 -PR) bridged clusters although the CpRhFe₂Te₂ system is presently unparalleled for the tractability of its various forms of isomerism. Through comparative studies on the 50e clusters including $PtFe_2Te_2(CO)_6(PPh_3)_2$, we have established that the observed shift patterns are a consequence of metal-metal bonding and not core electron count. It follows therefore that the shift pattern reflects the sensitivity of the tethering metalloid (Te) to the considerable anisotropy associated with the metal-metal bonding. In support of this we note that a very similar ⁷⁷Se NMR chemical shift pattern is observed for $PtFe_2Se_2(CO)_6(PPh_3)_2$ and $Fe_3Se_2(CO)_9$ although the latter, unlike Fe₃Te₂(CO)₉, does not form stable Lewis base adducts.²⁰

Acknowledgment. This research was supported by the National Science Foundation (Grant CHE 81-06781). We thank Engelhard Industries for a loan of platinum metals and the Selenium-Tellurium Development Association for a gift of tellurium dioxide. We thank Mr. Dennis Warrenfeltz for assistance with the NMR measurements. T.B.R. is a recipient of a Camille and Henry Dreyfus Teacher-Scholar award.

Registry No. CpRhFe₂Te₂(CO)₇, 85628-97-3; Fe₃Te₂(CO)₉, 22587-70-8; CpRh(CO)₂, 12192-97-1; CpRhFe₂Te₂(CO)₆, 85612-15-3; Me₃NO, 1184-78-7; CpRhFe₂Te₂(CO)₆PPh₃ (RhPPh₃ isomer), 85612-16-4; CpRhFe₂Te₂(CO)₆PPh₃ (FePPh₃ isomer), 85612-17-5; CpRhFe₂Te₂(CO)₅PPh₃, 85612-18-6; CpRhFe₂S₂(CO)₆, 85612-19-7; Fe₂(S₂)(CO)₆, 14243-23-3; Fe₃Te₂(CO)₉PPh₃, 80703-13-5; Fe₃Te₂(CO)₈PPh₃, 80703-07-7; HFe₂Te₂(CO)₆(PPh₃)₂, 76185-29-0; Fe, 7439-89-6; Te, 13494-80-9; Rh, 7440-16-6.

⁽¹⁸⁾ Day, V. W.; Lesch, D. A.; Rauchfuss, T. B. J. Am. Chem. Soc. 1982, 104, 1290.

⁽¹⁹⁾ Carrington, A.; McLachlan, A. D. "Introduction to Magnetic Resonance"; Harper and Row: New York, 1979.

⁽²⁰⁾ Lesch, D. A. Ph.D. Thesis, University of Illinois, 1983.