Synthesis, Reactivity, and ¹²⁵Te NMR Studies of $(C_5H_5)RhFe_2Te_2(CO)_x$ **(** $x = 6, 7$ **)**

DAVID A. LESCH and THOMAS B. RAUCHFUSS*

Received November 5. I982

The square-pyramidal 50e cluster Fe₃Te₂(CO)₉ reacts with CpRh(CO)₂ (Cp = η^5 -C₅H₅) to give a good yield of the heterometallic 52e cluster CpRhFe₂Te₂(CO)₇. This heptacarbonyl undergoes Me₃NO-induced decarbonylation to give two isomers of the hexacarbonyl CpRhFe₂Te₂(CO)₆. Recarbonylation of CpRhFe₂Te₂(CO)₆ formed the same heptacarbonyl in isomerically pure form. In contrast, addition of PPh₃ to CpRhFe₂Te₂(CO)₆ gave two isomers of CpRhFe₂Te₂(CO)₆PPh₃ that differ with regard to the placement of the PPh₃ ligand on iron or rhodium. The iron-phosphine adduct undergoes chemically induced decarbonylation to $CpRhFe_2Te_2(CO)$, PPh_3 while the rhodium-phosphine adduct resists decarbonylation. ¹²⁵Te NMR spectroscopy has been used for structure elucidation. The 50e (nido) clusters Fe₃Te₂(CO)₉, Fe₃Te₂(CO)₈(PPh₃), and $CpMFe_2Te_2(CO)_6$ (two isomers each for $M = Co$, Rh) all absorb in the range 1123-1081 ppm downfield of Me₂Te. In dramatic contrast, the 52e (arachno) clusters $Fe_3Te_2(CO)_9(PPh_3)$, CpMFe₂Te₂(CO) and CpRhFe₂Te₂(CO)₆PPh₃ all absorb in the range -825 to -973 ppm. PtFe₂Te₂(CO)₆(PPh₃)₂, which has an arachno-like structure but a nido electron count (50e), absorbs in the arachno range.

Bridging nonmetals play a pivotal role in the synthesis and stabilization of many transition-metal cluster compounds.¹ Structural studies have established that nonmetals can span from two to twelve² vertices. Reactivity studies have shown that, once assembled, such nonmetal transition-metal clusters are not only very resistant to declusterification but are often coordinatively unsaturated. $3,4$

We have developed an interest in tellurium-bridged metal carbonyl cluster compounds with recent emphasis on the chemistry $Fe₃Te₂(CO)₉$. This compound can be readily prepared in ca. 90% yield via the reduction of $TeO₃²⁻$ by HFe- $(CO)₄$ ⁻⁵ In contrast to the behavior of its NCH₃, S, and Se analogues, $Fe₃Te₂(CO)₉$ forms adducts with a wide variety of Lewis bases, e.g. $\overline{NH_3}$, R_3P , CO, and $I^{-4,6}$ Furthermore, the $Fe₃Te₂$ unit is so resistant to declusterification that it can be recovered intact from refluxing neat $P(OCH₃)₃$.⁷ In contrast, unbridged clusters like $Fe₃(CO)₁₂$ and $Ru₃(CO)₁₂$ reliably fragment upon treatment with excesses of Lewis bases.⁸ In this paper we describe the transmetalation of $Fe₃Te₂(CO)₉$ leading to new clusters whose core stoichiometry is $RhFe₂Te₂$. Mechanistic implications aside, selective and direct transmetalation is a potentially powerful yet obviously simple route to mixed-metal cluster compounds.⁹ This method is conceptually distinct from the widely recognized condensation approach¹⁰ since transmetalation preserves the nuclearity of

- (1) Muller, **A.;** Diemann, E.; Jostes, R.; Egge, H. *Angew. Chem., Inr. Ed. Engl.* 1980, 20, 934. Vahrenkamp, H. *Ibid.* 1975, 14, 322. Schmid,
G. *Ibid.* 1978, 17, 92. DiViara, M.; Sacconi, L. *Ibid.* 1982, 21, 330.
Vahrenkamp, H. In "Transition Metal Chemistry"; Müller, A., Diemann, D., Eds.; Verlag Chemie: Weinheim, **1980;** p **35** ff.
- **(2)** Rh1\$3b(C0)?13-: Vidal, **J.** L.; Troup, J. M. *J. Organomet. Chem.* **1981,** 213,351. Vidal, J. L.; Walker, W. E.; Schoening, R. C. Inorg. *Chem.* **1981, 20, 239-243.**
- (3) CrFe2(PPh)(CO)II: Huttner, G.; Mohr, G.; Friedrich, P. *Z. Natur*forsch., B: Anorg. Chem., Org. Chem. 1978, 33, 1254. CpMnFe₂-
(PPh)(CO)₈: Schneider, J.; Zaolna, L.; Huttner, G. Chem. Ber. 1982, 115, 989. Fe₄(Ptol)₂(CO)₁₀(OMe)₃): Vahrenkamp, H.; Wolters, D.
Organometallics F.; Vahrenkamp, H. *Ibid.* **1982,** 1, **756.**
- **(4)** Lesch, D. A.; Rauchfuss, T. B. *Organometallics* **1982,** *1,* **499.**
- **(5)** Lcsch, D. A,; Rauchfuss, T. B. Inorg. *Chem.* **1981,** *20,* **3583. (6)** Cetini, G.; Stanghellini, P. L.; Rossetti, R.; Gambino, 0. *J.* Organomet. *Chem.* **1968,** *IS,* **373.**
- **(7)** Day, V. W.; Lesch, D. **A.;** Rauchfuss, T. B., to be submitted for pub- lication.
- **(8)** Angelici, R. **J.;** Siefert, **E.** Inorg. Chem. **1966, 5, 1457.** Malik, **S. K.;** Po& A. *Ibid.* **1979,** *18,* **1241.**
- **(9)** For **a** recent example of the transmetalation of a carbonyl cluster, see: Beurich, H.; Blumhofer, R.; Vahrenkamp, H. *Chem. Eer.* **1982,** *115,* **2409.**

Introduction Table I. Microanalytical Data (Theoretical Values in Parentheses)

compd	% C	% H	%Fe
CpRhFe,Te, (CO),	19.66	0.66	15.17
	(19.72)	(0.69)	(15.28)
CpRhFe,Te,(CO)	18.89	0.66	16.01
	(18.79)	(0.72)	(15.89)
CpRhFe,Te,(CO),PPh,	36.00	2.07	11.81
(mixture of isomers)	(36.09)	(2.09)	(11.57)
$CpRhFe_2S_2(CO)$	25.46	0.90	21.77
	(25.81)	(0.98)	(21.82)
CpRhFe,Te,(CO),PPh,	36.19	2.14	11.62
	(35.88)	(2.15)	(11.92)

the cluster precursor. In the present case the transmetalated product is of special interest since it, like $Fe₃Te₂(CO)₉$, is effectively coordinatively unsaturated.

This paper describes the utility of 125 Te NMR spectroscopy for structural characterization. The $RhFe₂Te₂$ clusters are particularly suitable for this technique for two reasons: first, these clusters undergo a number of relatively subtle structural changes that are difficult to elucidate otherwise and, second, the distinctive nuclear properties of 103 Rh (100% naturally abundant, $I = \frac{1}{2}$ allow us to supplement chemical shift data with J_{RbTe} , thereby strengthening structural assignments. The results on the $RhFe₂Te₂$ system are found to be fully corroborated by the ¹²⁵Te NMR data obtained for related $Fe₂MTe₂$ clusters. These results reveal the extraordinary sensitivity of the chemical shift of the bridging tellurium to the metal-metal bonding within the cluster.

Experimental Section

¹²⁵Te NMR spectra were obtained on CDCl₃ solutions at 31.583 or 31.547 MHz on a modified Varian XL-100 spectrometer using an external D₂O lock. Operating parameters included a spectral width of 50 kHz, a pulse width of 25 μ s, and a pulse delay of 2 s. To obtain satisfactory spectra, $10³-10⁴$ scans were required. All chemical shifts are referenced to neat Me₂Te at 27 °C, upfield being negative. ³¹P(¹H) NMR spectra were obtained on the same instrument with 85% H_3PO_4 as the reference. IR spectra were obtained with use of cyclohexane solutions on a Nicolet 7199C **FT** IR spectrometer. Field desorption mass spectra (FDMS) were run on a Varian 731 spectrometer by Carter Cook. Microanalyses (Table I) were performed by the School of Chemical Sciences analytical laboratory.

Reactions were performed under nitrogen in reagent grade solvents. Thin-layer chromatography was performed on 2×10 cm plates cut from sheets of Eastman silica gel coated poly(viny1 chloride). Column chromatography was done with Fisher Florisil. Me₃NO was prepared

⁽¹⁰⁾ Gladfelter, **W. L.;** Geoffroy, G. L. *Adu. Organomet. Chem.* **1980,** *18,* **207.**

by triply subliming $Me₃NO·2H₂O$ (Aldrich) in vacuo at 80 °C. The preparations of $\text{CpRh}(\text{CO})_2$,¹¹ Fe₃Te₂(CO)₉,⁵ Fe₃Te₂(CO)₉PPh₃, $Fe₃Te₂(CO)₈PPh₃$,⁴ and $PtFe₂Te₂(CO)₆(PPh₃)₂$ ¹² are described elsewhere.

 $\text{CpRbFe}_2\text{Te}_2(\text{CO})_7$. $\text{Fe}_3\text{Te}_2(\text{CO})_9$ (1.1 g, 1.7 mmol) and CpRh-(CO), (0.40 **g,** 1.8 mmol) in MeCN4100 mL) were refluxed for 2 h and then evaporated to dryness. The residue was recrystallized from CH2C12 and MeOH: yield 73% (0.92 **g);** FDMS *m/z* 731 (M').

 $\text{CpRbFe}_2\text{Te}_2(\text{CO})_6$. Me₃NO (0.027 g, 0.37 mmol) was added to a CH₂Cl₂ (50 mL) solution of CpRhFe₂Te₂(CO)₇ (0.23 g, 0.32 mmol). After being stirred 10 min at room temperature, the solution was concentrated to 5-10 mL, and then hexane (\sim 30 mL) was added. Enough $CH₂Cl₂$ was added to dissolve the crystals that formed. The solution was placed on a Florisil column (80 mL) and eluted with hexane. The red-purple fraction (first band) was evaporated to dryness and then recrystallized from CH₂Cl₂/MeOH: yield 58% (0.15 g); FDMS m/z 703 (M⁺); UV-vis (toluene) λ_{max} 395 nm, $\epsilon = 9.75 \times$ 10^3 L mol⁻¹ cm⁻¹

Carbonylation of CpRhFe₂Te₂(CO)₆. A CH₂Cl₂ (15 mL) solution of CpRhFe₂Te₂(CO)₆ (0.050 g) was stirred in an autoclave under 2000 psi of CO. After 1 h at room temperature, a \sim 1:1 mixture (by TLC using 1:1 benzene/hexane eluent) of hexa- and heptacarbonyl derivatives was obtained. The solution was evaporated to dryness and chromatographed on Florisil (1:l benzene/hexane eluent). An IR spectrum of the dried residue of the orange fraction (second band) was identical with that of the sample prepared from CpRh(CO), and $Fe₃Te₂(CO)₉$.

 $\text{CpRhFe}_2\text{Te}_2(\text{CO})_6\text{PPh}_3$. PPh_3 (0.35 g, 1.3 mmol) was added to a CH₂Cl₂ (60 mL) solution of CpRhFe₂Te₂(CO)₆ (0.19 g, 0.27 mmol), which was then stirred for 16 h. The resulting mixture was evaporated to dryness, extracted into a mininum of benzene/hexane, and chromatographed on a Florisil column, eluting with 1:1 benzene/hexane. After two minor bands (orange then purple), a third intensely redorange band was eluted. The dried residue from the third band was recrystallized from CH2C12/MeOH: yield 71% (0.18 **g);** FDMS *m/z* 965 (M⁺). The two isomers of $CpRhFe₂Te₂(CO)₆PPh₃$ were separated by using a 40-cm Florisil column (1:1 benzene/hexane eluent). Alternatively the mixture of isomers was reacted with an excess of Me3N0, which selectively decarbonylated the iron-phosphine isomer. The large difference in polarity between $CpRhFe₂Te₂(CO)₆PPh₃$ and CpRhFe₂Te₂(CO)₅PPh₃ permitted easy chromatographic separation of this mixture on Florisil.

 $\text{CpRhFe}_2\text{Te}_2(\text{CO})_5\text{PPh}_3$. Excess Me₃NO was added to a CH_2Cl_2 solution of $\text{CpRhFe}_2(\text{CO})_6\text{PPh}_3$ (iron-phosphine isomer), and the mixture was stirred for 10 min. TLC (1:l benzene/hexane eluent) showed quantitative conversion to a purple, less polar compound. The solution was filtered through a silica gel plug; then crystals were obtained by adding MeOH and concentrating: **FDMS** *m/z* 937 (M'); UV-vis (toluene) λ_{max} 401 nm.

 $\text{CpRhFe}_{2}\text{S}_{2}(\text{CO})_{6}$. A hexane solution (15 mL) of CpRh(CO)_{2} (0.11 $g, 0.50$ mmol) and $Fe₂(S₂)(CO)₆$ (0.17 $g, 0.50$ mmol) was refluxed for 2 h. The concentrated solution was chromatographed on a Florisil column, and the third band (red-brown) was collected and evaporated. The residue was recrystallized from CH_2Cl_2/CH_3OH : yield 21% (53 mg); FDMS *m/z* 512 (M').

Results and Discussion

Synthesis and Reactivity of CpRhFe₂Te₂(CO)₇. Fe₃Te₂(C-O)₉ was found to react with $CpRh(CO)_2$ (Cp = η^5 -C₅H₅) in refluxing $CH₃CN$ to give the transmetalated cluster $CpRhFe₂Te₂(CO)₇$ in 73% yield. The formulation of this new compound is based on microanalytical data and the observation of a molecular ion in its field desorption mass spectrum. Crystals of this compound display a distinctive metallic luster, which is also observed for $Fe₃Te₂(CO)₁₀$.⁵ The similarity of these clusters also extends to their 125 Te NMR spectroscopy (vide infra). Since the CpRh(CO) and $Fe(CO)₄$ units are electronically equivalent, it follows that the formation of $CpRhFe₂Te₂(CO)₇$ from $Fe₃Te₂(CO)₉$ is equivalent to the addition of a Lewis base to $Fe₃Te₂(CO)₉$.⁴ This arises since, in CH₃CN solution, Fe₃Te₂(CO)₉ is in equilibrium with

Inorganic Chemistry, *Vol. 22, No. 13, 1983* **1855**

Table **11.** IR **Dataa**

a Cyclohexane solutions.

Table **III.** ¹²⁵Te NMR Data (CDCl₃ solution)^{*a*}

compd	δ	J, Hz
$Fe3Te2(CO)$ ₉	1123	
$Fe3Te2(CO)9PPh3$	-887	
	-938	42 $(Te-P)$
	1062	
$Fe3Te2(CO)8PPh3$ CpRhFe ₂ Te ₂ (CO) ₇ ^b	-973	93 (Te-Rh)
$CpRhFe2Te2(CO)6c$	1081	
	1109	
$CpRhFe,Te_2(CO)$, PPh_3 ^{d, e}	-925	100 (Te-Rh)
		$21(Te-P)$
	-838	
$PtFe, Te, (CO)$, $(PPh,)$,	-861	561 (Te-Pt)

^{*a*} Positive shifts are downfield of neat Me₂Te. ^{*b*} δ (¹H) 5.66. c_{δ} (¹H) 6.12. d_{δ} (³¹P) 37.1, $^{1}J_{\text{PRh}} = 176 \text{ Hz.}$ e_{δ} (³¹P) 62.3, ${}^{3}J_{\text{PRh}} = 60 \text{ Hz}, {}^{3}J_{\text{PTe}} = 56 \text{ Hz}.$

 $Fe₂(Te₂)(CO)₆$ ¹² which in turn reacts with "CpRh(CO)".

Trimethylamine N-oxide effected decarbonylation of the mixed-metal heptacarbonyl cluster to give the purple-black hexacarbonyl CpRhFe₂Te₂(CO)₆. This compound, like the corresponding heptacarbonyl precursor, was characterized by IR spectroscopy (Table II), field desorption mass spectrometry, combustion analyses (Table I), and 125 Te NMR spectroscopy (Table III). The decarbonylation of $CpRhFe₂Te₂(CO)₇$ is accompanied by both a color change from orange to brown and a dramatic decrease in chromatographic polarity. This behavior again is completely analogous to the decarbonylation of $Fe₃(\mu_{3}-Te)₂(CO)_{10-n}L⁴$. These conversions involve the formation of nido (50e) clusters¹³ from arachno (52e) precursors. It is interesting to note that in the nido configuration the mixed-metal cluster exists as two isomers as judged by ¹²⁵Te NMR spectroscopy. These isomers were not chromatographically separable, and the isomer ratio appeared to be invariant, as judged by IR and 125 Te NMR spectroscopy. Thus, they must interconvert readily although at a rate too slow to be measured in our NMR experiments. **A** similar dynamic process was postulated for $Fe_3(\mu_3-Te)_2(CO)_{9-n}L_n^7$ and was actually observed for $\text{Os}_3(\mu_3\text{-S})(\mu_3\text{-NSiMe}_3)(CO)_{9}$.¹⁴

The reaction of $Fe₂(S₂)(CO)₆$ with $CpRh(CO)₂$ contrasts interestingly with the tellurium cluster chemistry in that we observed only the nido hexacarbonyl CpRhFe₂S₂(CO)₆. This observation illustrates the tendency of the μ_3 -Te moiety to stabilize more open clusters than found for smaller tethering atoms.

 $CpRhFe₂Te₂(CO)₆$ reacted under 2000 psi of CO to re-form the heptacarbonyl derivative, which was spectroscopically indistinguishable from the sample initially prepared from $CpRh(CO)₂$ and $Fe₃Te₂(CO)₉$. The formation of a single isomer from the isomeric nido precursors implies that the thermodynamically most favored heptacarbonyl isomer is that where the "extra" CO is ligated to the rhodium. Different

⁽¹¹⁾ Lawson, R. J. Ph.D. Thesis, University of Illinois, 1978.
(12) Bogan, L. E., Jr.; Lesch, D. A.; Rauchfuss, T. B. J. Organa

⁽¹²⁾ Bogan, L. E., Jr.; Lesch, **D.** A.; Rauchfuss, T. B. *J.* Orgummet. Chem., in press.

⁽¹³⁾ Wade, K. Adv. Inorg. Chem. Rudiochem. **1976,** 18, 1.

Süss-Fink, G.; Thewalt, U.; Klein, H. P. J. Organomet. Chem. 1982, *224, 59.*

Scheme I

results were obtained for the reaction of the hexacarbonyl precursor with triphenylphosphine.

Reaction of $CpRhFe₂Te₂(CO)₆$ with excess triphenylphosphine at room temperature gave a mixture of *two* chromatographically separable isomers. The ³¹P NMR spectrum of the reaction mixture revealed that the major isomer had a large J_{PRh} while the minor isomer was characterized by a much smaller J_{PRh} (Table III). These resonances are assigned to the two isomeric clusters of the formula CpRhFe,Te,- $(CO)_{6}PPh_3$ (Scheme I). In the major isomer, the phosphine is coordinated to rhodium while the minor isomer is proposed to contain the $Fe(CO)_{3}PPh_{3}$ moiety. Upon treatment with $Me₃NO$, only the Fe(CO)₃PPh₃ isomer underwent decarbonylation to give the nido cluster CpRhFe₂Te₂(CO)₅PPh₃, which was characterized by FDMS and its electronic absorption spectrum. The nonreactivity of the CpRhPPh, isomer correlates with the generally observed pattern that a 6-coordinate Fe(CO), vertex is particularly resistant to decarbonylation.

¹²⁵Te **NMR Spectroscopy.** With the advent of multinuclear NMR spectroscopy, an increasing interest has been shown in the ¹²⁵Te nucleus.^{15,16} This isotope $(I = \frac{1}{2})$ is 7.3% naturally abundant and is characterized by a relatively high magnetogyric constant. At natural abundance, the ¹²⁵Te nucleus is approximately 14 times easier to detect than is ¹³C.¹⁵

There have been two reports of ¹²⁵Te NMR studies on transition-metal compounds. The cis and trans isomers of $PtCl₂(Te(CH₂CH₂Ph)₂)₂$ were recently shown to have chemical shifts that differed by 45 ppm. 17 We have previously reported that the ¹²⁵Te NMR chemical shifts for Fe₃Te₂(CO)₉ and $Fe₂Te₂(CO)₆$ differed by 1800 ppm.⁵ Thus, it was clear at the inception of the project that, while not necessarily easily correlated, ¹²⁵Te NMR shifts would be particularly sensitive to subtle structural changes.

The ¹²⁵Te NMR spectrum of CpRhFe₂Te₂(CO)₇ consists of a rhodium-coupled doublet $(J_{\text{RhTe}} = 91 \text{ Hz})$ centered at -973 ppm relative (upfield) to $Te(CH_3)_2$ (Table III). This same isomer of $CpRhFe,Te_2(CO)$, could be prepared via either the transmetalation reaction of $Fe₃Te₂(CO)₉$ or carbonylation of CpRhFe₂Te₂(CO)₆. In contrast, the ¹²⁵Te NMR spectrum of $CpRhFe₂Te₂(CO)₆$ showed signals at 1081 and 1109 ppm downfield of $Te(CH_3)_2$, the intensities being ca. 1:4 in favor of the higher field signal. The ¹²⁵Te chemical shift change of 2000 ppm attendant to the interconversion of the hexa- to heptacarbonyl spectacularly illustrates the sensitivity of the chemical shift of the μ_3 -Te moiety to the metal-metal bonding in these clusters. Consistent with this, we note that the isomeric PPh₃ adducts of the formula CpRhFe₂Te₂(CO)₆PPh₃ again have ¹²⁵Te NMR shifts very close to that of heptacarbonyl. While the isomeric PPh₃ adducts are characterized by comparable ¹²⁵Te NMR shifts, they differ appreciably in

Figure 1. ¹²⁵Te NMR spectrum of $\text{CpRh(PPh}_3)(\mu_3\text{-}\text{Te})_2\text{Fe}_2(\text{CO})_6$.

Figure 2. ¹²⁵Te NMR spectrum of $Fe₃Te₂(CO)₉PPh₃$.

 $|J_{\text{PRh}}|$ as determined by ³¹P NMR spectroscopy. The isomer with the larger $|J_{\text{PRh}}|$ of 176 Hz is assumed to possess the PPh₃ coordinated to the RhCp moiety. The other isomer, characterized $|J_{\text{PRh}}| = 60$ Hz, must therefore contain the Fe- (CO) ₃PPh₃ group. Furthermore, the ¹²⁵Te NMR pattern for the Fe-PPh₃ isomer of $[CpRhFe,Te₂(CO)₆]$ -PPh₃ is broad and complex, consistent with the complications associated with slightly nonequivalent Te moieties each of which is coupled to 103 Rh and 31 P nuclei. On the other hand, the 125 Te NMR spectrum of the $Rh-PPh₃$ isomer is straightforward as it reveals coupling of equivalent Te atoms to both ¹⁰³Rh and ³¹P (Figure 1).

The correlation of 125 Te NMR shifts and cluster core structure is strongly supported by studies on related cluster compounds whose structures are well established. $Fe₃Te₂(C O$ ₉, a 50 e cluster compound, has a ¹²⁵Te NMR shift of 1100 ppm downfield of $Te(CH_3)_2$, within 15 ppm of the resonances observed for the CpRhFe₂Te₂(CO)₆ isomers. Conversion of $Fe₃Te₂(CO)₉$ to its PPh, adduct results in a large upfield shift. Both its chemical shift and the splitting pattern are consistent with the arachno structure for $Fe₃Te₂(CO)₉PPh₃$. This structure, which has been confirmed crystallographically,⁴ consists of an Fe(CO)₃PPh₃ moiety bridged via two μ_3 -Te units

^{(15) &}quot;NMR and the Periodic Table"; Harris, R. K., Mann, B. E., Eds.;
Academic Press: New York, 1978.
(16) Gysling, H. Coord. Chem. Rev. 1982, 42, 133. Granger, P.; Chapelli, S. J. Magn. Reson. 1980, 39, 329.

⁽¹⁷⁾ Gysling, H. J.; Zumbulyadis, N.; Robertson, J. A. *J. Orgunomet. Chem.* **1981,** *209,* C41.

Figure 3. ¹²⁵Te NMR chemical shift scale for some Te-containing organometallic clusters.

to the $Fe₂(CO)₆$ base. This structure is fully compatible with the ¹²⁵Te NMR spectrum, which is comprised of a singlet and a ³¹P-coupled doublet (Figure 2). Decarbonylation of this adduct affords $Fe₃Te₂(CO)₈PPh₃$, whose ¹²⁵Te NMR shift now lies in the region observed for other nido clusters. From these measurements it is clear that there are two *distinct* chemical shift regions for these nido and arachno M_3Te_2 clusters at 1100 \pm 25 and -900 \pm 75 ppm, respectively. The observed chemical shift scale is depicted in Figure 3.

The species $\Pr{Fe_2Te_2(CO)_6(PPh_3)_2}^{18}$ like $Fe_3Te_2(CO)_9$, is a 50e cluster compound. On the basis of its electron count alone, a square-pyramidal (nido) structure and a low-field ¹²⁵Te NMR shift would be anticipated. However, as a consequence of the predilection of platinum(II) for the electron deficient 16e configuration, $Pt(PPh_3)_2$ is *effectively* equivalent to the $Fe(CO)_4$, CpCo(CO), and CpRh(CO) moieties. This assertion is supported by the close structural relationship that exists between $Fe₃Te₂(CO)₉PPh₃$ and $PtFe₂Se₂(CO)₆(PPh₃)₂18$ (which is completely analogous to $PtFe₂Te₂(CO)₆(PPh₃)₂$).

This structural and electronic equivalence of the arachno (52e) $Fe₃Te₂$ and $MFe₂Te₂$ clusters and the 50e PtFe₂Te₂ cluster is confirmed by their similar 125 Te NMR chemical shifts (Figure 3). This measurement demonstrates that *the observed* ¹²⁵Te *NMR shijit pattern is a consequence of the number of metal-metal bonds subtended by the tethering Te groups and not* the electron count of the cluster. This conclusion is consistent with the view that the observed 125 Te chemical shift pattern results from the magnetic anisotropy associated with the metal-metal bonds.¹⁹

Conclusions

The conversion of $Fe₃Te₂(CO)₉$ into $C_pRhFe₂Te₂(CO)₇$ involves transmetalation concomitant with a nido to arachno cluster expansion. We suggest that the assembly of the $Fe₂RhTe₂$ clusters proceeds via the 2e oxidative addition of CpRh(CO) across the Te-Te bond of $Fe₂(Te₂)(CO)₆$. A similar process is exemplified by the simple oxidative addition of PtC₂H₄(PPh₃)₂ to Fe₂(Te₂)(CO)₆ to give PtFe₂Te₂(CO)₆- $(PPh₃)₂$.¹⁸ In the event that the incorporated metal fragment can undergo further ligand dissociation and can accommodate a pseudooctahedral coordination geometry, further condensation can occur as observed in the synthesis of the isomeric nido $RhFe₂Te₂$ clusters. The intermediate arachno cluster is readily isolable for $CpRhFe₂Te₂(CO)₇$ whereas for the corresponding sulfide it is unstable with respect to decarbonylation. A particularly important aspect of the conversion of the $Fe₃Te₂$ cluster to its CpRhFe₂Te₂ derivative is that Fe₃Te₂-(CO), effectively functions as a source of the highly reactive and unstable $Fe₂(Te₂)(CO)₆$ moiety.⁵ The implication is that $Fe₃Te₂(CO)₉ represents a potentially versatile precursor to a$ number of different clusters containing the $FeTe(CO)_3$ unit.¹²

 125 Te NMR spectroscopy has proven to be uniquely effective for elucidating structural changes peculiar to the $CpRhFe₂Te₂$ cluster core. While it is logical that a single arachno isomer would obtain for the oxidative addition of $Fe₂(Te₂)(CO)₆$ to "CpRh(CO)", it is not so obvious that the two isomers of $\text{CpRhFe}_{2}\text{Te}_{2}(\text{CO})_{6}$ would carbonylate to give the same isomer. In contrast, the isomeric triphenylphosphine adducts $CpRhFe₂Te₂(CO)₆PPh₃$ do no readily interconvert, indicative that these are kinetic products.

The distinctive chemical shift patterns observed for the nido and arachno M_3Te_2 clusters (Figure 3) demonstrate the utility of NMR measurements on the cluster core. Similar shift patterns have been observed for related phosphinidine $(\mu_3$ -PR) bridged clusters although the $CpRhFe₂Te₂$ system is presently unparalleled for the tractability of its various forms of isomerism. Through comparative studies on the 50e clusters including $PtFe₂Te₂(CO)₆(PPh₃)₂$, we have established that the observed shift patterns are a consequence of metal-metal bonding and *not* core electron count. It follows therefore that the shift pattern reflects the sensitivity of the tethering metalloid (Te) to the considerable anisotropy associated with the metal-metal bonding. In support of this we note that a very similar 77Se NMR chemical shift pattern is observed for $PtFe₂Se₂(CO)₆(PPh₃)₂$ and $Fe₃Se₂(CO)₉$ although the latter, unlike $Fe₃Te₂(CO)₉$, does not form stable Lewis base adducts.²⁰

Acknowledgment. This research was supported by the National Science Foundation (Grant CHE 81-06781). We thank Engelhard Industries for a loan of platinum metals and the Selenium-Tellurium Development Association for a gift of tellurium dioxide. We thank Mr. Dennis Warrenfeltz for assistance with the NMR measurements. T.B.R. is a recipient of a Camille and Henry Dreyfus Teacher-Scholar award.

Registry No. CpRhFe₂Te₂(CO)₇, 85628-97-3; Fe₃Te₂(CO)₉, Me₃NO, 1184-78-7; CpRhFe₂Te₂(CO)₆PPh₃ (RhPPh₃ isomer), 85612-16-4; CpRhFe₂Te₂(CO)₆PPh₃ (FePPh₃ isomer), 85612-17-5; $CpRhFe₂Te₂(CO)₅PPh₃, 85612-18-6; CpRhFe₂S₂(CO)₆, 85612-19-7;$ $Fe₂(S₂)(CO)₆$, 14243-23-3; $Fe₃Te₂(CO)₉PPh₃$, 80703-13-5; $Fe₃Te₂$ - $(CO)_{8}$ PPh₃, 80703-07-7; HFe₂Te₂(CO)₆(PPh₃)₂, 76185-29-0; Fe, 7439-89-6; Te, 13494-80-9; Rh, 7440-16-6. 22587-70-8; CpRh(CO)₂, 12192-97-1; CpRhFe₂Te₂(CO)₆, 85612-15-3;

⁽¹⁸⁾ Day, **V.** W.; Lesch, D. **A.;** Rauchfuss, T. **B.** *J. Am. Chem.* **SOC. 1982,** *104,* **1290.**

⁽¹⁹⁾ Carrington, A.; McLachlan, **A.** D. 'Introduction to Magnetic

⁽²⁰⁾ Lesch, D. A. Ph.D. Thesis, University of Illinois, 1983.